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Using electronic structure methods and statistical methods, we have studied theoretically the volume depen-
dence of the exchange interactions and Curie temperatures in the diluted magnetic semiconductors. In both
Mn-doped GaAs and Mn-doped InAs, the calculated Curie temperatures from numerical exact Monte Carlo
simulations are more or less constant for a large volume interval. We have compared the exchange mechanisms
in Mn-doped GaAs using both the local density approximation �LDA� and the LDA+U method. It is demon-
strated that the magnetic properties are understood within Zener’s p-d exchange model for the LDA+U, while
in LDA they reflect a mixture between double and p-d exchange mechanisms.
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I. INTRODUCTION

The field of spintronics has attracted a great deal of atten-
tion during the last decade.1–3 The possibility of combining
the electronic charge and spin degrees of freedom opens up a
new route to materials with new functionality, for instance,
magnetic multilayers, which are used in giant magnetoresis-
tance read heads in hard drives, diluted magnetic semicon-
ductors �DMS�, and half-metallic ferromagnets such as Heu-
sler alloys. Half-metallic ferromagnets are particularly
interesting due to the potential use as a spin injector in spin-
tronics applications and have been intensively studied both
theoretically and experimentally. Ever since the discovery of
large-Tc ferromagnetism in Mn-doped GaAs by Ohno in
1998,3 there has been very active research on different DMS
systems.4–7 Recent developments have made it possible to
have more sophisticated control over defects in the samples.
Moreover, annealing have increased the critical temperature
TC from around 110 to around 172 K for Mn-doped GaAs.
Still, the TC is well below room temperature, which prohibits
a practical use of this material for devices, and there has been
an active search for other DMS systems with room tempera-
ture ferromagnetism. Nevertheless, Mn-doped GaAs repre-
sents a very important playground for testing novel theoret-
ical and experimental ideas due to the vast amount of data
collected on this system. Moreover, the samples are usually
very well characterized.

In this paper, we study the volume dependence of the
critical temperature in Mn-doped GaAs and InAs theoreti-
cally using electronic structure methods and statistical meth-
ods. Despite the relative simplicity to study this experimen-
tally, we have not found any experimental data for Mn-doped
GaAs and InAs. However, for Mn-doped InSb, it has been
shown that the system goes from a nonmagnetic material to a
ferromagnetic material under pressure.8 Theoretically, the
volume dependence of the Curie temperatures has been re-
cently reported for the half-metallic ferromagnets MnAs,9

the Heusler alloy Ni2MnSn,10 and Fe-Co alloys.11

The paper is organized as follows: In Sec. II, we give
details of the calculation procedure, Sec. III contains results
from the calculations and discussions, and in Sec. IV we give
our conclusions.

II. THEORY

A. Electronic structure

The electronic structure calculations were performed us-
ing the Korringa-Kohn-Rostoker �KKR� Green function
method. Two different implementations of the KKR method
were used. The first one employs the multipole-corrected
atomic sphere approximation �ASA+M�,12 while the second
is a full potential implementation of the KKR method. For
more details about the full potential implementation, we refer
to Ref. 13. Overall, the two implementations give very simi-
lar results. Empty spheres were included in the tetrahedral
positions of the zinc blende lattice in order to obtain good
space filling. Equal Wigner-Seitz radii were used for all
spheres, and the valence basis set consists of spdf orbitals
where scalar relativistic corrections are taken into account
while spin-orbit effects are neglected. The energy levels of
the core electrons are recalculated after each iteration by
solving a fully relativistic Dirac equation. The effect of dis-
order was treated in the framework of coherent potential ap-
proximation �CPA�. The local spin density approximation
was employed for the exchange-correlation potential by us-
ing the parametrization of Perdew, Burke, and Ernzerhof.14

We also performed some additional calculations based on the
local density approximation �LDA�+U in order to check to
what extent electron correlations affect our results. In these
calculations, the Hubbard U parameter was fixed to 4 eV and
the Hund exchange to 0.7 eV. The use of CPA in DMS sys-
tems was justified by comparing our CPA density of states
and magnetic moments with supercell calculations using spe-
cial quasirandom structures, where we find a very good
agreement between the two methods.

B. Exchange interactions

If we neglect the very small direct interaction between
Mn and As, the classical Heisenberg Hamiltonian in the zero
external magnetic field can be written in the following form:

H = − �
ij

Jijei · e j , �1�

where Jij are Mn-Mn exchange interactions, i, j are unit cell
indices, and ei is the unit vector parallel to the magnetization
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at site i. The positive �negative� values of Jij correspond to
the ferromagnetic �antiferromagnetic� couplings, respec-
tively, and the magnitudes of the corresponding magnetic
moments are included in the definition of Jij. Small induced
moments on the As and Ga atoms are not included in our
description. The exchange interactions were obtained by
mapping the electronic structure calculations to the classical
Heisenberg Hamiltonian. Here, we employ the magnetic
force theorem to calculate the energy change due to small
rotation of the moment directions of the atoms at sites i and
j.15 In the framework of KKR-ASA-CPA the energy change
could then be related to the exchange interaction by

J̄ij = −
1

8�i
�

C

TrL��i�z�ḡij
↑ �z�� j�z�ḡji

↓ �z��dz . �2�

Here, TrL denotes the trace over the angular momentum L
= ��m�, �i�z�= Pi

↑�z�− Pi
↓�z� is a diagonal matrix defined via

the potential functions Pi
��z� and is closely related to the

exchange splitting corresponding to the magnetic atom, and
ḡij

↑ �z� and ḡji
↓ �z� refer to site off-diagonal blocks of the con-

ditionally averaged Green function, namely, the average over
all configurations with a pair of magnetic atoms fixed at the
sites i and j. The energy integration is performed along a
contour in the complex energy plane, which encircles the
occupied part of the valence band. The on-site exchange in-
teraction J0 of atom i could be directly calculated from the
relation

J̄i
0 =

1

8�i
�

C

TrL��i�z��ḡii
↑�z� − ḡii

↓�z��

+ �i�z�ḡii
↑�z��i�z�ḡii

↓�z��dz , �3�

where ḡii
��z� is the diagonal block of the conditionally aver-

aged Green function.

C. Critical temperatures

The critical temperatures were evaluated using both the
mean field approximation �MFA� and the more sophisticated
Monte Carlo �MC� simulations. In the MFA, the critical �Cu-
rie� temperature TC is proportional to the exchange
interactions15 as

kBTC
MFA =

2

3
xJ0, �4�

where J0	� jJ0j
Mn-Mn, i.e., the sum of the Mn-Mn exchange

interactions �in principle, J0 also contains Mn-Ga and Mn-As
contributions, but they are much smaller than the Mn-Mn
contribution�. x represents the concentration of magnetic at-
oms on the fcc lattice. It should be noted that the above
expressions employ the so called virtual crystal approxima-
tion �VCA� or the averaged lattice in order to deal with di-
luted magnetic systems. It is known from earlier studies16–19

that this approximation is very bad for diluted systems with
localized exchange interactions where disorder and percola-
tion effects play an important role. Therefore, we have also
evaluated TC using Monte Carlo simulations where both dis-
order and thermal fluctuations are properly included in a nu-

merically exact procedure. The MC simulations employed
the Metropolis algorithm where the critical temperature was
evaluated by means of the cumulant crossing method.20 In all
cases, the lattice size was varied in order to employ finite
size scaling, and the total number of magnetic atoms in the
system was varied between 3000 and 15 000. Thirty disorder
configurations were realized for each lattice size, and the
thermal average of the magnetization was measured for
around 30 000 Monte Carlo steps per lattice site.

III. RESULTS

Before we present results for the systems Ga0.95Mn0.05As
and In0.95Mn0.05As, we will first discuss the validity of the
classical Heisenberg model and the use of the adiabatic ap-
proximation in the mapping for the present systems. The
Heisenberg model as written in Eq. �1� only allows for trans-
verse fluctuations of the spins �spin waves� and not any lon-
gitudinal fluctuations �Stoner excitations�. In order to fulfill
the validity, the spins must therefore be rigid under any ro-
tation. For this purpose, we calculated the electronic struc-
ture in two different reference states, the ferromagnetic state
and the disordered local moment �DLM� state. In both
Ga0.95Mn0.05As and In0.95Mn0.05As, the Mn local moment ba-
sically retains the same value for the two configurations, and
one can conclude that the applicability of the Heisenberg
model is justified for the present systems. It should be noted
that we in the present study used the ferromagnetic �FM�
reference state for the mapping. If instead the DLM reference
state is used, the calculated critical temperature for
Ga0.95Mn0.05As using MC increases only by a few percent.

A. Ga0.95Mn0.05As

The system Ga0.95Mn0.05As is definitely the most studied
DMS system due to its rather high Curie temperature �172 K
for 7% Mn �Refs. 5–7��, and it is rather well understood in
many areas. However, as far as we know, no experimental
data exist for the pressure dependence of the Curie tempera-
ture, which is studied here theoretically. In all the following,
the experimental lattice constant aexp refers to the value
5.65 Å.

1. Density of States

Figure 1�a� shows the calculated density of states of the
Mn impurities for three different lattice constants ��a /aexp
= +3%, 0%, and −4%� using the local density approxima-
tion. For all lattice constants, a Mn impurity peak is present
at the top of the valence band, being much weaker than the
peak toward the bottom of the valence band. With increasing
volume, the Mn density of states �DOS� narrows. This arises
because of the hybridization with the valence p band, which
strongly narrows since the p states become more localized.
In parallel to this, the minority d peak moves to higher en-
ergies, from about 0.45 to 0.90 eV above EF, which is di-
rectly related to an increase of the local moments.

Figure 1�b� shows the local DOS of Mn in �Ga,Mn�As
with 5% Mn in the LDA+U approximation. Compared to the
LDA results, the lower lying d peak is shifted from about
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−3.0 eV to a sharp resonance at −4.2 eV, which is in very
good agreement with experiments. At the same time, the
resonance at EF is considerably broadened, indicating a de-
localization of the hole state. The low lying d peak shifts
only slightly with volume. Due to the large U value, the
minority peak above EF is shifted by more than 1 eV to
higher energies, depending again slightly on volume.

The delocalization of the hole state due to the Hubbard U
parameter and the simultaneous shift of the majority d state
to lower energies has the important consequence that the
dominating exchange mechanism in LDA+U is Zener’s p-d
exchange,21 while in LDA a mixture of double and p-d ex-
change determines the magnetic properties of �Ga,Mn�As.

2. Local and total moments

The local moments of Mn in �Ga,Mn�As are listed for
three lattice constants in Table I, both in the LDA and the
LDA+U method. In LDA, the local Mn moment increases
from 3.41�B for �a

aexp
=−4% to 3.85�B for �a

aexp
= +3%, reflect-

ing the increased localization of the Mn wave function. In
the whole volume range half-metallicity is preserved, yield-
ing a constant total moment of 4�B per Mn impurity.

Compared to the LDA, in LDA+U the calculated local
moments of Mn are considerably larger, resulting from the
increased localization of both the majority and the minority
d-wave functions. At the same time, the pressure dependence
becomes weaker. In addition, we obtain a total moment
higher than 4�B, indicating that the majority and minority
d-wave functions do not hybridize with the valence p states
strongly enough to maintain half-metallicity.

3. Exchange coupling parameters and J01„EF…

In Fig. 2, the calculated coupling parameters J0j are dis-
played as a function of the distance of impurity j from the
onsite impurity at position 0. The results of LDA calcula-
tions, shown in Fig. 2�a�, show a very different trend than the
LDA+U results of Fig. 2�b�. While these results show for all
distances a steady increase of the interaction with compres-
sion, as one might expect from p-d exchange, the LDA val-
ues are rather insensitive to compression, except for the near-
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FIG. 1. �Color online� Local density of states �LDOS� �blue full
line, left scale� of Ga0.95Mn0.05As using the KKR method in the �a�
LDA approximation and �b� LDA+U approximation. For each fig-
ure, the topmost panel corresponds to an expanded lattice �+3% of
aexp�, the middle panel the experimental lattice, and the lowest
panel a compressed lattice �−4% of aexp�. Here, aexp denotes the
experimental lattice constant. The dashed line �red, right scale�
shows the exchange coupling constant J01 for nearest neighbor Mn
impurity as a function of a fictitious value of the Fermi level EF.

TABLE I. Mn and total magnetic moments of Mn-doped GaAs
in LDA and LDA+U approximations and InAs in LDA.

System � a /aexp Mloc Mtot

�Ga0.95Mn0.05� As
�LDA�

+3% 3.85 4.00

0% 3.70 4.00

−4% 3.41 4.00

�Ga0.95Mn0.05� As
�LDA+U�

+3% 4.43 4.34

0% 4.29 4.25

−4% 4.08 4.14

�In0.95Mn0.05� As
�LDA�

0% 4.15 4.17
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est neighbor coupling constant, which for a 4% compression
decrease by a factor of 3 and become negative for compres-
sions larger than 5%.

This strong tendency toward antiferromagnetic coupling
arises from super exchange, which basically varies as

�Esuper 
 c
�tdd�2

�xs
, �5�

where c denotes the concentration, tdd is the hopping matrix
element between majority d states and minority d states of
the impurity, and �xs is the exchange splitting, being in LDA
proportional to the local moment. Upon compression, tdd in-
creases, while at the same time �xs decreases due to the
reduction of the local moment. Usually, super exchange is
very short ranged, affecting mostly the nearest neighbor cou-
plings.

A clearer picture of the behavior of the different coupling
mechanisms with compression can be obtained from Fig. 1,
which shows in addition to the local DOS curve versus the
energy E-EF, also the exchange coupling constants J01�EF

*� to
the nearest neighbors as a function of an artificially changed
Fermi level EF

*, away from the self-consistent value of EF.
Both in LDA and LDA+U, these curves show three peaks
close to EF: First, a peak at around −0.3 eV arises due to p-d

exchange and double exchange from the resonance at EF.
Second, the strongly negative value above EF arises from the
super exchange. Third, the positive peak at 1–2 eV above EF
arises from double exchange due to the minority d state in
this energy region. The most important difference between
the LDA and LDA+U is the much larger exchange splitting
of 
U, which shifts the majority peak down below −4 eV
and, at the same time, the minority peak up by about 1.5 eV.
Due to this, the exchange splitting in Eq. �5� is strongly
increased, significantly reducing the super exchange in the
energy gap region by as much as a factor of 4 since in
LDA+U the exchange �xs in Eq. �5� is given by the Hubbard
U value. As a consequence, in LDA+U the super exchange
is not important for the self-consistent J01 values in GaM-
nAs, whereas in LDA the J01 values strongly decrease with
compression due to super exchange. Thus, in LDA the be-
havior of �Ga,Mn�As is determined by a complex superposi-
tion of double exchange, p-d exchange, and super exchange,
while in the more realistic LDA+U approach, p-d exchange
alone dominates the behavior, up to very strong compres-
sions, where, finally, also in LDA+U super exchange will
destabilize ferromagnetism.

4. Critical temperatures

In Fig. 3, the calculated critical temperatures in
Ga0.95Mn0.05As using exchange interactions from the LDA
and LDA+U approximations, are displayed. In the MFA,
together with the VCA, all exchange interactions have the
same weight, and due to the dominating nearest neighbor
exchange interaction the values are very high. However, as
have been demonstrated in several previous studies,16–19 the
MFA-VCA description is too oversimplified and cannot be
applied to DMS systems. More specifically, the use of an
average lattice �VCA� is not applicable to diluted systems.
Instead, one has to rely on a lattice model where the Heisen-
berg model is solved numerically. Basically, two methods in
this line have been developed: the local random phase ap-

(a)

(b)

FIG. 2. �Color online� Calculated exchange interactions of
Ga0.95Mn0.05As using the KKR method in the �a� LDA approxima-
tion and �b� LDA+U approximation as a function of distance d �in
units of lattice constant a�.
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FIG. 3. �Color online� Calculated critical temperatures of
Ga0.95Mn0.05As in the LDA and LDA+U approximations. MFA-
VCA denotes the mean field approximation in virtual crystal ap-
proximation, and MC the Monte Carlo results.
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proximation �LRPA�18 and MC simulations. Here, we em-
ploy the Monte Carlo method, which, in principle, solves the
spin fluctuations and disorder in the Heisenberg model ex-
actly. One of the reason that the VCA description does not
work for diluted systems is that the average separation be-
tween magnetic impurities is much larger than the nearest
neighbor distance. For example, on a fcc lattice with 5%
magnetic atoms, the average separation is slightly more than
two lattice constants. Therefore, the thermodynamic quanti-
ties �TC� are mainly determined by the exchange interactions
around the average separation, and the nearest neighbor in-
teractions do not carry much weight. Therefore, the calcu-
lated Curie temperatures from the MC simulations are much
smaller than the MFA-VCA results. In LDA, the Curie tem-
peratures from MC are basically constant around 100 K for
the whole volume interval in Ga0.95Mn0.05As �although a flat
maximum is obtained for around the experimental lattice
constant�, while the results from the MFA-VCA show a dis-
tinct maximum for slightly expanded lattices due to the
maximum of J1 at this volume. In LDA+U, the calculated
Curie temperatures increase slightly upon pressure, but over-
all the values are lower than the LDA results, in agreement
with previous results.17

B. In0.95Mn0.05As

The system In0.95Mn0.05As was chosen as its pressure de-
pendence of the critical temperatures is a bit different from
that of the Ga0.95Mn0.05As, as we will see below. The experi-
mental lattice constant is 6.06 Å. All the following calcula-
tions were done using the LDA approximation.

1. Local moments and exchange parameters

For the three lattice constants �two compressed lattices
with �a /aexp=−6% and −4% and for the experimental lattice
constant�, the calculated moments are given in Table I and
the exchange coupling parameters Jij are displayed in Figs.
4�a� and 4�b�. The values are obtained by the LDA methods.
Comparing with the LDA and LDA+U results for �Ga,M-
n�As, we see that the LDA results for �In,Mn�As resemble
more the LDA+U results for �Ga,Mn�As than the LDA re-
sults. Thus, even in LDA, the physical behavior is well de-
scribed by p-d exchange. This is clearly shown in Fig. 4�a�,
where the interactions from the second to seventh cell show
a monotonic increase with increasing pressure, and in Fig.
4�b�, where the contributions of the different coordination
shells to the mean field value of the critical temperatures are
displayed �n0jJ0j, where n0j are the coordination number of
shell j�. However, the first nearest neighbors show a more
complex behavior, and J01 has a maximum for −2% and
slightly decreases for large compression, showing that also in
�In,Mn�As super exchange becomes important.

2. Critical temperatures

The pressure dependence of the Curie temperatures is dis-
played in Fig. 5. Two different mean field estimates are
shown, the first one is estimated from the Mn on-site ex-
change parameter J0 and the second one from the Mn-Mn
exchange interactions Jij. The difference between the two

estimates are around 10% �which can be attributed to Mn-
As, Mn-Ga, and Mn-interstitial contributions�. Contrary to
Ga0.95Mn0.05As �in LDA�, the critical temperatures increase
with pressure, although the effect is rather weak. A similar
kind of behavior has been observed in Mn-doped InSb,8

which goes from a nonmagnetic material to a magnetic ma-
terial �although with very low TC� under pressure. This is
very different from normal itinerant magnetic metals, which
typically have a lower TC when applying pressure. However,
in rare-earth systems with localized 4f states, the opposite is
true; i.e., they typically have an increasing TC under pres-
sure.

IV. DISCUSSION AND SIMPLE MODEL

In this section, we will further discuss the behavior of J0
as a function of the lattice constant in both GaMnAs and
InMnAs according to a simple model. We consider the cou-
pling between �i� Mn d and host p states �responsible for the
stabilization of the hole-induced FM spin arrangement via a
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n 0j
J 0j

(m
R

y)

J
1

J
2

J
3

J
4

J
5

J
6

J
7

(a)

(b)

FIG. 4. �Color online� �a� Calculated exchange interactions of
In0.95Mn0.05As using the KKR method in the LDA approximation as
a function of distance d �in units of lattice constant a�. �b� Contri-
bution to the mean-field critical temperatures for different coordi-
nation shells. The experimental lattice constant is 6.06 Å, corre-
sponding to the last right value.
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Zener-like mechanism in narrow-gap semiconductors, such
as InAs and, to a large extent, GaAs� and the �ii� Mn d-d
interactions �responsible for the super-exchange mechanism
that tends to stabilize an antiferromagnetic �AFM� spin con-
figuration�. It is well known that in DMS, symmetry favors
the coupling between t2d Mn states with t2p valence states,
giving rise to p-d delocalized hybrids, whereas the ed states
remain “nonbonding” with a much more localized character.

We here follow the model proposed by Dalpian et al.22

along with their same notation: In the case of a valence band
maximum lying between the majority and minority spin d
states, as in GaMnAs and InMnAs, the total energy differ-
ence between the AFM and FM states can be expressed as

�E�AFM − FM� = �mh��pd
1 + �pd

2 � − 6�dd
1,2, �6�

where ��1 is a prefactor related to the hole localization
�i.e., it decreases when the hole states become more local-
ized�, mh is the hole concentration, �pd

1 and �pd
2 represent the

coupling between t2d and t2p states in the majority and mi-
nority spin channels, respectively, and �dd

1,2 represents the
coupling between minority and majority spin d states �in
turn, �dd

1,2 can be decomposed in two contributions, coming
from t2 and e electrons�. In the above expression, the first
term represents the Zener-like FM mechanism, whereas the
second term represents the super-exchange AFM contribu-
tion. We extend this model in order to describe the depen-
dence of J0 �which is proportional to �E�AFM−FM�� on the
lattice constant. In particular, each coupling parameter at the
lattice constant a follows a “scaling law:” �ll��a�=�ll��a0�
��a0 /a�nll�, where l , l� labels p and d orbitals, �ll��a0� is the
value of the coupling parameter at the equilibrium lattice
constant a0, and nll� denote the exponents. This procedure
follows the spirit of the semiempirical Slater-Koster ap-
proach to the tight-binding Hamiltonian for the dependence
of the coupling terms on the interatomic distance; within this
framework, the power dependence is generally denoted as
Harrison-like scaling laws. Since the scaling power law is

expected to depend on the localization of the orbitals, in the
fit we used different scaling exponents to describe the p-d
coupling in the FM term, as well as the d-d�e� and d-d�t2�
couplings for t2 and e states, respectively, in the AFM con-
tribution. Here, we did not attempt to perform a full-tight-
binding fit of all the parameters involved but only focused on
modeling the pressure dependence of the coupling param-
eters that are relevant for the occurrence of a specific ex-
change mechanism. Therefore, the prefactor in front of the
scaling laws contains all the terms, including the values of
the hopping parameters at the equilibrium lattice constant,
the proportionality constants, etc. The dependence of the
coupling parameters on the lattice constant �both for the p-d
coupling as well as for the d-d coupling� reflects what is
expected: The p-d hybridization increases by applying pres-
sure, so does the Zener mechanism. On the other hand, the
exchange splitting is reduced by applying pressure; there-
fore, the minority states lie closer to the Fermi level �see the
DOS plots shown in the previous sections�, so that the super
exchange is stronger for smaller lattice constants. This is
equivalent to saying that as pressure is applied, the level
repulsion between minority and majority d states increases
since the coupling states get closer in energy. Therefore, both
exchange mechanisms increase in module as a function of
pressure; however, the final trend �i.e., nonmonotonous with
a maximum in proximity to the equilibrium lattice constant�
is determined by a competition of FM �positive� and AFM

FIG. 6. �Color online� J0 values calculated for �a� GaMnAs, 5%;
�b� GaMnAs, 7%; �c� InMnAs, 5%; and �d� InMnAs, 10% �sym-
bols�. Solid lines show the fit according to the model. Vertical
dashed �dotted� lines denote the theoretical �experimental� equilib-
rium lattice constants. C1–C8 are proportionality constants.

5.6 5.7 5.8 5.9 6 6.1 6.2
0

50

100

150

200

Lattice parameter (Å)
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FIG. 5. �Color online� Calculated critical temperatures of
In0.95Mn0.05As in the LDA approximation. MFA-VCA denotes the
mean field approximation in virtual crystal approximation �from
both Mn on-site exchange parameter J0 and Mn-Mn exchange in-
teraction Jij�, and MC the Monte Carlo results.
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�negative� effects, and the predominance of one over the
other cannot be simply predicted without explicitly perform-
ing first-principles calculations.

Following a least-squares method, we have fitted the J0
values as a function of the a lattice constant, and the results
are shown in Fig. 6 for �a� GaMnAs, 5%; �b� GaMnAs, 7%;
�c� InMnAs, 5%; and �d� InMnAs, 10%. The best fit resulted
in a very high correlation coefficient and small rms error
�	0.99 and 
0.02, respectively�, showing that this simple
model is sufficiently accurate to describe �not only qualita-
tively, but also quantitatively� the observed nonmonotonous
trend as a function of pressure. Using the theoretically evalu-
ated lattice constants �a0�GaAs�=5.44 Å and a0�InAs�
=5.86 Å�, the fitted exponents were 4, 3.65, and 4.36 for the
p-d �both for spin-up and spin-down d states�, d-d�t2�, and
d-d�e� contributions, which are physically meaningful for
scaling laws involving localized d states.23

V. CONCLUSIONS

In conclusion, we have presented the volume dependence
of the exchange interactions for Mn-doped GaAs and InAs

using both the LDA and the LDA+U approximation. The
exchange mechanisms in Mn-doped GaAs using LDA is a
mixture between double and p-d exchange, while in LDA
+U the dominating exchange mechanism is Zener’s p-d ex-
change. Mn-doped InAs is also well described within the p-d
exchange mechanism.

The calculated exchange interactions were then subse-
quently used to estimate critical temperatures employing a
classical Heisenberg model and numerically exact Monte
Carlo simulations. In both systems, the critical temperatures
stay rather constant in a large volume interval.
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